Pitágoras de Samos


Pitágoras, o fundador da escola pitagórica, nasceu em Samos pelos anos 571-70 a.C. Em 532-31 foi para a Itália, na Magna Grécia, e fundou em Crotona, colônia grega, uma associação científico-ético-política, que foi o centro de irradiação da escola e encontrou partidários entre os gregos da Itália meridional e da Sicília. Pitágoras aspirava - e também conseguiu - a fazer com que a educação ética da escola se ampliasse e se tornasse reforma política; isto, porém, levantou oposições contra ele e foi constrangido a deixar Crotona, mudando-se para Metaponto, aí morrendo provavelmente em 497-96 a.C.

Segundo o pitagorismo, a essência, o princípio essencial de que são compostas todas as coisas, é o número, ou seja, as relações matemáticas. Os pitagóricos, não distinguindo ainda bem forma, lei e matéria, substância das coisas, consideraram o número como sendo a união de um e outro elemento. Da racional concepção de que tudo é regulado segundo relações numéricas, passa-se à visão fantástica de que o número seja a essência das coisas.

Mas, achada a substância una e imutável das coisas, os pitagóricos se acham em dificuldades para explicar a multiplicidade e o vir-a-ser, precisamente mediante o uno e o imutável. E julgam poder explicar a variedade do mundo mediante o concurso dos opostos, que são - segundo os pitagóricos - o ilimitado e o limitado, ou seja, o par e o ímpar, o imperfeito e o perfeito. O número divide-se em par, que não põe limites à divisão por dois, e, por conseguinte, é ilimitado (quer dizer, imperfeito, segundo a concepção grega, a qual via a perfeição na determinação); e ímpar, que põe limites à divisão por dois e, portanto, é limitado, determinado, perfeito. Os elementos constitutivos de cada coisa - sendo cada coisa número - são o par e o ímpar, o ilimitado e o limitado, o pior e o melhor. Radical oposição esta, que explicaria o vir-a-ser e o múltiplice, que seriam reconduzidos à concordância e à unidade pela fundamental harmonia (matemática), que governa e deve governar o mundo material e moral, astronômico e sonoro.

Não há qualidades, não há nada além de quantidades, não quantidades de elementos (água, fogo, etc.), mas delimitações do ilimitado, do Ápeiron; este é análogo ao ser potencial da hyle de Aristóteles. Assim, toda coisa nasce de dois fatores opostos. De novo, aqui, dualismo. Notável quadro estabelecido por Aristóteles (Metaf. I, 5): delimitado, ilimitado; ímpar, par; uno, múltiplo; direita, esquerda; masculino, feminino; imóvel, agitado; reto, curvo; luz, trevas; bom, mau; quadrado, ablongo. De um lado têm-se, portanto: delimitado, ímpar, uno, direita, masculino, imóvel, reto, luz, bom, quadrado. De outro lado, ilimitado, par, múltiplo, esquerda, feminino, agitado, curvo, trevas, mau, ablongo. Isso lembra o quadro-modelo de Parmênides. O ser é luz e, portanto, sutil, quente, ativo; o não-ser é noite e, portanto, denso, frio, passivo.

O Escândalo dos "Irracionais"

A primitiva concepção pitagórica de número apresentava limitações que logo exigiriam dos próprios pitagóricos tentativas de reformulação. O principal impasse enfrentado por essa aritmo-geometria baseada em inteiros (já que as unidades seriam indivisíveis) foi o levantado pelo números irracionais. Tanto na relação entre certos valores musicais (expressos matematicamente), quanto na base mesma da matemática, surgem grandezas inexprimíveis naquela concepção de número. Assim, a relação entre o lado e a diagonal do quadrado (que é a da hipotenusa do triângulo retângulo isósceles com o cateto) tornava-se "irracional", aquelas linhas não apresentavam "razão comum" ou "comum medida", o que se evidenciava pelo aparecimento na tradução aritmética da relação entre elas, de valores sem possibilidade de determinação exaustiva, como V¯².
O "escândalo" dos irracionais manifestava-se no próprio teorema de Pitágoras (o quadrado construído sobre a hipotenusa é igual a soma dos quadrados construídos sobre os catetos). Com efeito, desde que se atribuísse valor 1 ao cateto de um triângulo isósceles, a hipotenusa seria igual a V¯². Ou então, quando se pressupunha que os valores correspondentes à hipotenusa e aos catetos eram números primos entre si, acabava-se por se concluir pelo absurdo de que um deles não era afinal nem par nem ímpar.

"Educai as crianças e não
será preciso punir os homens".
(Pitágoras)

Simbolismo dos números pitagóricos

Um é a razão, dois a opinião, quatro a justiça, cinco o casamento, dez a perfeição, etc.;

Um é o ponto, dois é a linha, três a superfície, quatro o volume.

Cosmogonia. O Universo e os planetas esféricos. A harmonia das esferas...

Teoria das cordas sonoras

A música, con efeito, é o melhor exemplo do que queriam dizer os pitagóricos. A música, como tal, só existe em nossos nervos e em nosso cérebro; fora de nós ou em si mesma (no sentido de Locke), compõe-se somente das relações numéricas quanto ao ritmo, se se trata de sua quantidade, e quanto à tonalidade, se se trata de sua qualidade, conforme se considere o elemento harmônico ou o elemento rítmico. No mesmo sentido, poder-se-ia exprimir o ser do universo, do qual a música é, pelo menos em certo sentido, a imagem, exclusivamente com o auxílio de números. E tal é, estritamente, o domínio da química e das ciências naturais. Trata-se de encontrar fórmulas matemáticas para as forças absolutamente impenetráveis. Nossa ciência é, nesse sentido, pitagórica. Na química, temos uma mistura de atomismo e de pitagorismo, para a qual Ecphantus na Antiguidade passa por ter aberto o caminho.

O Pitagorismo

Durante o século VI a.C. verificou-se, em algumas regiões do mundo grego, uma revivescência da vida religiosa. Os historiadores mostram que um dos fatores concorreram para esse fenômeno foi a linha política adotada, em geral, pelos tiranos, para garantir seu papel de líderes populares e para enfraquecer a antiga aristocracia - que se supunha descendente dos deuses protetores das polis, das divindades "oficiais" -, os tiranos favoreciam a expansão de cultos populares ou estrangeiros.

A força mística do grande filósofo e reformador religioso, há 2.600 anos vem, poderosamente, influindo no pensamento Ocidental. Dentre as religiões de mistérios, de caráter iniciático, a doutrina pitagórica foi a que mais se difundiu na antiguidade.

"Ajuda teus semelhantes a levantar sua carga,
mas não a carregues".
(Pitágoras)

A Pátria Estelar

Dentre as religiões de mistério, de caráter iniciático, uma teve enorme difusão: o culto de Dioniso, originário da Trácia, e que passou a constituir o núcleo da religião órfica. O orfismo - de Orfeu, que primeiro teria recebido a revelação de certos mistérios e os teria confiado a iniciados sob a forma de poemas musicais - era uma religião essencialmente esotérica. Os órficos acreditavam na imortalidade da alma e na metempsicose, ou seja, na transmigração da alma através de vários corpos, a fim de efetivar sua purificação. A alma aspiraria, por sua própria natureza, a retornar à sua pátria celeste, às estrelas, de onde caíra. Para libertar-se, porém, do ciclo das reincarnações, o homem necessitaria da ajuda de Dioniso, deus libertador que completava a libertação preparada pelas práticas catárticas (entre as quais se incluia a abstinência de certos alimentos). A religião órfica pressupunha, portanto, uma distinção - não só de natureza como também de valor - entre a alma ignea e imortal e os corpos pereciveis através dos quais ela realizava sua purificação.

"O que fala, semeia - o que escuta, recolhe".
(Pitágoras)

Salvação pela Matemática

Pitágoras teria sido antes de mais nada um reformador religioso, pois realizou uma modificação fundamental na doutrina órfica, transformando o sentido da "via de salvação"; em lugar do deus Dioniso colocou a matemática.
A grande novidade introduzida certamente pelo próprio Pitágoras na religiosidade órfica foi a tranformação do processo de libertação da alma num esforço puramente humano, porque basicamente intelectual. A purificação resultaria do trabalho intelectual, que descobre a estrutura numérica das coisas e torna, assim, a alma semelhante ao cosmo, entendido como unidade harmônica, sustentada pela ordem e pela proporção, e que se manifesta como beleza.

Pitágoras teria chegado à concepção de que todas as coisas são números através inclusive de uma observação no campo musical: verificou no monocórdio que o som produzido varia de acordo com a extensão da corda sonora. Ou seja, descobriu que há uma dependência do som em relação à extensão, da música, (tão importante como propiciadora de vivências religiosas estáticas) em relação à matemática.

"Todas as coisas são números".
(Pitágoras)

Em Todas as Coisas, o Número

Para os pitagóricos, os números são reais, são essências realizadas (usando-se um vocabulário filosófico posterior), são a própria "alma das coisas", são entidades corpóreas constituídas por unidades contíguas e a prenunciar os átomos de Leucipo e Demócrito. Assim, quando os pitagóricos falam que as coisas imitam os números estariam entendendo essa imitação (mimesis) num sentido realista: as coisas manifestariam externamente a estrutura numérica inerente.

De acordo com essa concepção, os pitagóricos adotaram uma representação figurada dos números, em substituição às representações literais mais arcaicas, usadas pelos gregos e depois pelos romanos. A representação figurada permitia explicitar a lei de composição dos números e torna-se um fator de avanço das investigações matemáticas dos pitagóricos. Os primeiros números, representados figurativamente, bastavam para justificar o que há de essencial no universo.

"Pensem o que quiserem de ti;
faze aquilo que te parece justo".
(Pitágoras)